

Ransomware Creation
legacv

legacv@proton.me

dedbit3

-

byork-bork

-

ABSTRACT
The final project within the Systems Programming course
involved the creation of a program that utilized an external
application programming interface (API). This project intends to
utilize the creation of ransomware as a means of exploring the
Windows API and its capabilities, and two separate programs
were written to accomplish the task – one for process injection
and one for file encryption. The project was mostly successful in
terms of both programs’ functionality; however, there is not yet a
way to undo the file encryption of a user’s system. In addition,
encryption of the entire filesystem has not been tested due to time
and resource constraints.

C CONCEPTS USED
External API implementation; Arrays; Strings; For-loops;
While-loops; Programmer-defined functions; Shellcode

1. INTRODUCTION
C programming has been the focus of the Systems Programming
course at Purdue University, specifically programming within the
Linux environment. As a final project for the course, students
were tasked with developing a program that incorporates an
external API in addition to several C concepts that were used
throughout the semester. The project parameters were open-ended,
and due to the background and interests of the authors, a piece of
ransomware was chosen as the focus in order to better understand
the mindset of bad actors and their tools. The ransomware was
chosen to be Windows- rather than Linux-based to add to the
complexity of the project as well as provide an adequate set of
APIs and API documentation to pull from.

2. BACKGROUND
Ransomware is a form of malware that infects the user’s system,
encrypting all files on it. The attacker will demand a ransom from
the user in order to restore their system and obtain the key to
decrypt their files.1

2.1 Related Works
Several other pieces of malware and ransomware were referenced
in the creation of this project. The malware repository and

1 What is ransomware? 2024. Microsoft.

information source VX Underground proved useful in both
learning fundamental malware operation cycles as well as
referencing concrete pieces of code.2 In particular, the HelloKitty
ransomware source code (first deployed in 2020 and leaked in
2023)3 was used as a reference for spidering methods, blacklisted
files and folders necessary for system operation, and file
encryption. Several online resources and creators, such as the
YouTube personality Crow, were referenced in early stages for
base malware concepts, the handling of threads, and usage of the
Win32 API.

3. USE OF EXTERNAL API
Two similar but distinct APIs were used for creating the first stage
of the ransomware – Win32 and Windows Native. A third API,
OpenSSL, was used for the secondary encryption portion.

3.1 Win32 API
The Win32 API (Application Programming Interface) is an
integral part of the Windows operating system, providing a variety
of functions and data structures that enable developers to create
Windows applications This includes window management, user
input control, file management, and system communication. At its
core, the Win32 API acts as a bridge between an application and
the operating system, facilitating communication and enabling
developers to access system resources and perform various tasks.
Developers use the Win32 API by calling functions that have
specific parameters to request services from the operating system.
These function calls can manipulate windows, handle user input,
manage files and directories, communicate with hardware devices,
and perform many other tasks required to run complex Windows
applications. This is the preferred API Microsoft urges developers
to use and its functions are standard across all Microsoft Windows
versions and builds. It is also extensively documented on
Microsoft's website.4

4 Get started with desktop Windows apps that use the Win32 API
2021. Microsoft.

3 Abrams, L. 2023. HelloKitty ransomware source code leaked on
hacking forum. BleepingComputer.

2 VX Underground. 2024.

 Figure 1. Windows 32 Architecture

3.2 Windows Native API
The Native API, also known as the NT API or NTDLL, is a
low-level interface provided by the Windows NT kernel for
system-level programming. It acts as the main interface for
user-mode applications that communicate directly with the kernel
and other system components. Unlike the Win32 API, which
focuses more on user-level application development, the Native
API provides deeper control over system features and
performance. Developers can use the Native API for application
and thread management, memory allocation and conversion, I/O
performance, and system configuration. Although the Native API
provides powerful capabilities, it is more complicated and less
portable than the Win32 API, as it is tightly coupled to the
Windows NT kernel architecture Developers working with native
APIs often need an understanding deep in Windows and
kernel-mode configuration options. Every call to the win32 API
will eventually pass through the NT API before being passed to
the kernel for execution. The NT API is undocumented and
Microsoft does not want developers using it to build applications.
Its function names change depending on the Windows release and
build version, making it hard to work with and needing a lot of
research to be able to accomplish the developers intended tasks.
However the benefit of using the Windows Native API in
malware development is its lower level capabilities and due to that
the ability to more easily evade antivirus solutions.5

3.3 OpenSSL API
OpenSSL is a free, open-source cryptography project built to
provide a toolkit for a wide array of encryption needs.6 It also
provides an API for C and C++ developers to be able to encrypt
and decrypt data with a wide array of modes. For this project, the
simplicity of AES 128-bit CBC mode encryption was preferred.
Two headers in particular were necessary from the OpenSSL
library; rand.h and evp.h. Rand.h is a header that allows a

6 Welcome to OpenSSL. 2024. OpenSSL.org.

5 Inside Native Applications. 2021. Microsoft.

programmer to use the pseudorandom generation built into
OpenSSL for the purpose of creating encryption keys. Evp.h is
what essentially allows all other functionality: key and IV
handling as well as encryption. The main function at work from
the OpenSSL API is EVP_EncryptInit_ex(), which initializes
encryption, using EVP_aes_256_cbc() as a parameter in order to
specify the desired encryption mode. In future implementations,
using the evp.h header to implement decryption functionality
would be desired. However, in initial tests, decryption of the
encrypted files was not successful.

4. APPROACH AND METHODS
As mentioned briefly in the introduction, two separate programs
composed the project to simulate how ransomware would function
in a real-life attack – one program utilized process injection and
the second program utilized file encryption. In a real-life scenario,
an initial malicious download would inject itself into a running
process, then contact a command-and-control (C2) server in order
to download the second stage of the payload (in this case,
filesystem spidering and encryption) and execute it.

4.1 Process Injection
Process injection is an advanced technique used in software
development and security exploits to inject code at the address of
a running process. Process injection techniques usually involve
modifying the memory of the target process and inserting custom
code or payload. The most common methods of process injection
are DLL injection, where a dynamic link library (DLL) is placed
in the address space of the target process, and code injection, in
which machine code is inserted directly into process memory.
Furthermore, protection against process injection attacks requires
strong security measures such as code signing, process
monitoring, and access control to prevent unauthorized code and
preserve system integrity.

For the project, a process injection was performed using several
functions that were a part of the NT API. These functions had to
be defined in a separate header file to lay the groundwork for each
specific functionality; for example, the NtCreateThreadEx
function was defined within the header file so that it could be used
in the main program to create a thread that allows the shellcode to
be injected into the process of choice. Some additional functions
were pulled from the Win32 API for the processes that could not
be accomplished using the NT API.

4.2 File Encryption
File encryption is a method of converting readable data into an
unreadable form, called ciphertext, to protect against unauthorized
access. Cryptographic algorithms and keys can be used to encode
the contents of this file, making it incomprehensible without the
associated decryption key. File encryption is widely used for
purposes such as protecting sensitive information, ensuring
confidentiality of data when transmitted or stored, and compliance
with privacy laws. Common encryption methods include
symmetric encryption, which uses the same key for encryption

and decryption, and asymmetric encryption, which uses two keys:
the public key for encryption and the private key for decryption.
Encryption algorithms such as the Advanced Encryption Standard
(AES), Rivest-Shamir-Adleman (RSA), and Elliptic Curve
Cryptography (ECC) do a great job of protecting data. In the case
of malware file encryption can be used to encrypt sensitive and
important data on a system and ask for a ransom in exchange for
the decryption keys, forcing the victim to either comply or lose
their data forever. As previously mentioned, AES 128-bit CBC
mode encryption was used for this project due to its symmetric
nature and resistance to being “cracked” (or having its key
correctly guessed) even by modern technology.

5. RESULTS

The process injection, or first phase, had several problems during
the testing, namely problems with access being denied when
attempting to run the shellcode. However, once the process was
streamlined, the code was able to run by injecting shellcode into
the MS Paint process. This shellcode successfully allowed for the
listener device to connect to the host computer, where commands
that were run from the listener executed on the host machine.
There were also hurdles regarding Windows Defender blocking
execution of the first stage of the program upon detection of
shellcode, though this was eventually remedied.

The code to be run from the listener was the encryption program,
which was successful in encrypting all important files on the
host’s system. The most glaring problem with this was that the
encryption could not be undone once the files were encrypted.
This would be fine if the intention was to create actual malware
that would work to destroy the user’s system in an irreversible
manner, however for ease and safety of testing, it was preferable
to allow for the encryption to be undone. For this reason, total
filesystem encryption was not tested; though, it is theorized that if
the base path within the code was changed from a testing
directory to the root of the filesystem, it would have proceeded
successfully.

6. CONCLUSIONS
Both programs ended up being fairly successful by the end of the
project. Of course, neither of them were perfect in how they
executed or their functionality; however, they both were able to do
the main tasks that they were intended to perform. A lot of
knowledge and experience was also gained through using the
Win32 API and the NT API, as all of the authors now have a
better understanding of the processes and elements that go into
each component of the Windows operating system.

6.1 Future Work
The first course of action regarding additional work with the code
would be to implement a way for the user to “pay off” the ransom
in some way so that the file encryption can be undone if the user
complies. This would also make testing of the code much more
manageable without the need of a virtual machine. It is likely that

a separate program would need to be built for this such that it
could be “distributed” to the victims by the authors of the
ransomware, rather than baked into the encryption program for
easy reverse-engineering. Some more work could also be done to
further simplify the code to make it easier to hide the code within
another process (if the group wanted to have the code begin
executing from within another program the user runs).

Though total filesystem encryption was not tested, it is
hypothesized that due to the size of a typical Windows filesystem,
it would have taken several minutes to complete once run. This
leads to more possible future work in creating multiple threads or
processes in the second stage of the payload so that the encryption
works through the filesystem faster, decreasing its chances of
being halted in its tracks.

7. ACKNOWLEDGEMENTS
The authors would like to thank the professor and TAs for guiding
their studies throughout the semester. Casey would like to thank
the authors of the HelloKitty ransomware, as well as the fine
people behind VX Underground, for providing insights into the
world of black-hat hacking.

7.1 Individual Contributions
legacv – Designed and wrote the filesystem spidering and
encryption code
byork-bork – Wrote test programs for testing the APIs and the
process injection code
dedbit3 – Designed and wrote the process injection code

8. REFERENCES
[1] What is ransomware? 2024. Microsoft.

https://www.microsoft.com/en-us/security/business/security-
101/what-is-ransomware#:~:text=What%20is%20ransomwa
re%3F%201%20Ransomware%20defined%20Ransomware
%20is,a%20ransomware%20attack%20...%204%20Ransom
ware%20protection%20

[2] VX Underground. 2024. https://vx-underground.org/

[3] Abrams, L. 2023. HelloKitty ransomware source code
leaked on hacking forum. BleepingComputer.
https://www.bleepingcomputer.com/news/security/hellokitty
-ransomware-source-code-leaked-on-hacking-forum/

[4] Get started with desktop Windows apps that use the Win32
API. 2021. Microsoft.
https://learn.microsoft.com/en-us/windows/win32/desktop-p
rogramming

[5] Inside Native Applications. 2021. Microsoft.
https://learn.microsoft.com/en-us/sysinternals/resources/insi
de-native-applications

[6] Welcome to OpenSSL. 2024. OpenSSL.org.
https://www.openssl.org/

